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SUMMARY 

This work explores for the first time the possibilities and limitations in applying the 

total electron-yield (TEY) detection mode of X-ray absorption spectroscopy (XAS) to 

in situ studies of catalysts and other materials in reactive gas environments. The main 

objectives of the work were 

• to design, test and optimise a new apparatus for in situ studies of materials 

under gas-flow at elevated temperatures and pressures, 

• to achieve a quantitative understanding of the TEY signal formation 

process, and especially the probing depth of the technique, as a function of 

experimental and sample specimen parameters, 

• to examine whether and under which conditions the TEY signal is an 

accurate measure of the X-ray absorption coefficient, 

• to carry out first in situ characterisations of catalytically relevant materials. 

All these aims have been fulfilled and the results are presented in this thesis. 

The thesis is organised as follows. In the first chapter, a summary of the most salient 

principles of X-ray absorption spectroscopy and relevant data analysis techniques is 

presented. The second chapter describes the development and characterisation of the 

new apparatus used for obtaining the experimental TEY XAS data presented in the 

remaining chapters of the thesis. Chapter 3 describes for the first time how fast 

Monte-Carlo algorithms for the simulation of electron trajectories can be employed 

to calculate the depth information carried by the TEY signal. An experimental study 

of NiO overlayers on Ni has been carried out to confirm the predictions of the 

Monte-Carlo simulation model. Data in chapter 4 demonstrate conclusively that the 

response of the TEY signal to the X-ray absorption coefficient becomes non-linear at 

grazing X-ray incidence (due to a non-linearity analogous to the well-known ‘self-

absorption’ effect in fluorescence-yield XAS). Furthermore, it is shown that sample 

materials with high X-ray fluorescence yields exhibit a ‘self-absorption’ effect due to 

TEY contributions excited by fluorescent photons. It is shown that the magnitude of 

the expected spectral distortions can be calculated using simple recipes based on the 

simulation results obtained earlier in chapter 3. These results resolve some long-

standing uncertainties in the literature. Chapter 5 describes an in situ XAS/XRD 

study of a commercial methanol synthesis catalyst (Cu/ZnO/Al2O3), and discusses 

mainly the relation between the Cu K-edge XAFS amplitudes and the oxidation state 

and the morphology of the Cu particles. The question whether the chemical state of 



the active Cu surface under reaction conditions is characterised by a (sub)oxide layer 

is has been adressed in situ. No evidence for the dissociation of carbon dioxide on Cu 

was found. Chapter 6 describes in situ studies of unsupported Cu/Ni alloy particles 

by TEY XAS, XRD and XPS. This study was undertaken because Cu/Ni alloys are 

one of the best characterised catalytically active bimetallic systems, providing a 

benchmark against which TEY XAS results could be calibrated. Previous 

observations of Cu segregation from the bulk of these particles were confirmed by 

XPS. The presence of segregated layers provided a final test for the probing depth 

characteristics of TEY XAS. 
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GLOSSARY OF ACRONYMS 

ithin chapters and in major subsections I have tried to be consistent in avoiding acronyms 

without explaning their meaning first. As experimental solid-state science is studded with 

techniques named by three-, four- or more-letter words, I might have overlooked the 

explanations every now and then. For the sake of improved readability I am therefore providing a list 

of expansions which might be useful to the reader of the next 200 pages. 

AES   Auger electron spectroscopy 
AFM   Atomic force microscopy 
ARSES   Angle-resolved secondary electron spectroscopy 
ARUPS   Angle-resolved ultraviolet photoelectron spectroscopy 
CEMS   Conversion electron Mössbauer spectroscopy 
CEY   Conversion electron-yield (= TEY detected under gas-flow) 
DAFS   Diffraction anomalous fine-structure 
EDAX   Energy-dispersive analysis of X-ray fluorescence 
EDX   Energy-dispersive X-ray fluorescence analysis 
EELS   Electron energy loss spectroscopy 
EXAFS   Extended X-ray absorption fine structure 
FIM   Field ionisation microscopy 
FY    Fluorescence-yield 
FYNES   Fluorescence-yield near-edge spectroscopy/structure 
LBA   Line-broadening analysis 
LEED   Low-energy electron diffraction 
MS   Multiple scattering 
NEXAFS   Near-edge X-ray absorption fine-structure 
PEY   Partial electron-yield 
SAXS   Small-angle X-ray scattering 
SEM   Scanning electron microscopy 
SEXAFS   Surface extended X-ray absorption fine structure 
SES   Secondary electron spectroscopy 
SEY   Secondary electron-yield 
SS    Single scattering 
STM   Scanning tunneling microscopy 
TDS   Thermal desorption spectroscopy 
TEY   Total electron-yield 
TEM   Transmission electron microscopy 
TOF   Time-of-flight 
TPD   Temperature programmed desorption 
TPO   Temperature programmed oxidation 
TPR   Temperature programmed reduction 
TPRS   Temperature programmed reaction spectroscopy 
UHV   Ultra-high vacuum 
UPS   Ultraviolet photoelectron spectroscopy 
WAXS   Wide angle X-ray scattering 
XAFS   X-ray absorption fine-structure 
XANES   X-ray absorption near-edge structure 
XAS   X-ray absorption spectroscopy 
XPS   X-ray photoelectron spectroscopy 
XRD   X-ray diffraction 
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