Congratulations, Dr Chang!

Our group member Sin-Yuen Chang has passed her PhD viva subject to very minor corrections, and has already submitted the revised thesis, titled “Studies of Metal Speciation and Nucleation in Complex Functional Liquid Systems“. Sin-Yuen has already taken up a position at Diamond Light Source, and a visiting appointment at the University of Leeds, through which she will continue to collaborate with our team. Congratulations , Dr Chang!

JACS paper!

Under leadership of Akihiro Uehara a combined electrochemical/X-ray absorption spectroscopy study deconstructing the famous Brust-Schiffrin synthesis of gold nanoparticles has been carried out. The results elucidates some of the transformations taking place during this two-phase synthesis. The results show that the reaction at the oil-water interface includes a time dependent evolution of the Au(I) species formed as intermediates, and identifies the nature of the (also time dependent) thiolate side products.

Electrochemical Insight into the Brust-Schiffrin Synthesis of Au Nanoparticles
A. Uehara, S. G. Booth, S.-Y. Chang, S. L. M. Schroeder, T. Imai, T. Hashimoto, J. F. W. Mosselmans & R. A. W. Dryfe
Journal of the American Chemical Society 137 (2015) 15135–15144.
DOI: 10.1021/jacs.5b07825

2015 Publications So Far…

The group has had a good run of publications this year. So far our 2015 output of papers includes:

Intermolecular Bonding of Hemin in Solution and in Solid State Probed by N K-edge X-ray Spectroscopies
R. Golnak, J. Xiao, K. Atak, J. S. Stevens, A. Gainar, S. L. M. Schroeder & E. F. Aziz
Physical Chemistry – Chemical Physics 17 (2015), accepted.
DOI: 10.1039/C5CP04529K
Fenton-Like Oxidation of 4−Chlorophenol: Homogeneous or Heterogeneous?
C.-C. Kuan, S.-Y. Chang, S. L. M. Schroeder
Industrial & Engineering Chemistry Research 54 (2015) 8122–8129.
DOI: 10.1021/acs.iecr.5b02378
Gold Deposition at a Free-Standing Liquid/Liquid Interface, Evidence for the Formation of Au(I) by Microfocus X-ray Spectroscopy (μXRF and μXAFS) and Cyclic Voltammetry
S. G. Booth, A. Uehara, S.-Y. Chang, J. F. W. Mosselmans, S. L. M. Schroeder, R. A. W. Dryfe
Journal of Physical Chemistry C 119 (2015) 16785–16792.
DOI: 10.1021/acs.jpcc.5b05127
Synthesis of Polyurea-Polyether Core Shell Nanoparticles via Spontaneous Nanoprecipitation
P. Locatelli, S. Woutters, C. Lindsay, S. L. M. Schroeder, J. H. Hobdell & A. Saiani
RSC Advances 5 (2015) 41668-41676.
DOI: 10.1039/c5ra03662c
Structure and Bonding in Au(I) Chloride Species: A Critical Examination of X-ray Absorption Spectroscopy (XAS) Data
S.-Y. Chang, A. Uehara, S. G. Booth, K. Ignatyev, J. F. W. Mosselmans, R. A. W. Dryfe, S. L. M. Schroeder
RSC Advances 5 (2015) 6912-6918.
DOI: 10.1039/C4RA13087A
Proton Transfer, Hydrogen Bonding, and Disorder: Nitrogen NEXAFS and XPS of Bipyridine-Acid Salts and Co-crystals
J. S. Stevens, L. K. Newton, C. Jaye, C. A. Muryn, D. A. Fischer & S. L. M. Schroeder
Crystal Growth & Design 15 (2015) 1776-1783.
DOI: 10.1021/cg5018278
Self-Association of Organic Solutes in Solution: A NEXAFS Study of Aqueous Imidazole
M. J. Thomason, C. R. Seabourne, B. M. Sattelle, G. A. Hembury, J. S. Stevens, A. J. Scott, E. F. Aziz & S. L. M. Schroeder
Faraday Discussions 179 (2015) 269-289..
DOI: 10.1039/C5FD00005J
Chemical Speciation and Bond Lengths of Organic Solutes by Core Level
Spectroscopy: pH- and Solvent-Influence on p-Aminobenzoic Acid

J. S. Stevens, A. Gainar, E. Suljoti, J. Xiao, R. Golnak, E. F. Aziz & S. L. M. Schroeder
Chemistry – A European Journal 21 (2015) 7256-7263.
DOI: 10.1002/chem.201405635

Paper on Novel Spectroelectrochemical Technique

A windowless electrochemical cell for the spectroscopic investigation of the liquid-liquid interface, using a dual droplet configuration, has been designed. The setup permits in situ probing of the bulk solutions and the interfacial region by fibre-optic UV-vis spectroscopy, microfocus X-ray fluorescence (XRF) elemental mapping, and microfocus X-ray absorption near-edge structure (micro-XANES) spectroscopy. The electrodeposition of Au, induced by ion transfer of the tetrachloroaurate complex from a halogenated solvent (containing a weak reducing agent) to the aqueous phase, has been monitored by a combination of the three techniques. The reaction can be followed in-situ by UV-vis spectroscopy by detecting the oxidised form of the reducing agent. Voltammetric evidence suggests the formation of interfacial Au(I) species, whereas micro-XANES detect the presence of metallic Au(0).

In Situ Spectroelectrochemistry at Free-Standing Liquid-Liquid Interfaces: UV-vis Spectroscopy, Microfocus X-ray Absorption Spectroscopy and Fluorescence Imaging
Y. Gründer, J.F.W. Mosselmans, S.L.M. Schroeder & R.A.W. Dryfe
Journal of Physical Chemistry C 117 (2013), 5765–5773.

New publication: gold nanoparticle nucleation at liquid/liquid interfaces

The first publication from the EPSRC/NSF collaboration has appeared in press:

Inhibited and Enhanced Nucleation of Gold Nanoparticles at the Water|1,2-Dichloroethane Interface
Y. Gründer, H.L.T. Ho, J.F.W. Mosselmans, S.L.M. Schroeder, R.A.W. Dryfe
Physical Chemistry Chemical Physics 13 (2011), 15681-15689.

New arrivals

It is the time of the year where people come and go. We would like to welcome

  • Devon Indar and Amani Musharah, who join our team as new PhD students from September 2010. Both will work on the catalytic upgrading of chemicals from sustainable feedstocks.
  • Dr Elizabeth Willneff,  who took up her position as Arts and Humanities Research Council (AHRC) Fellow in the School on 1 September. Beth will work on strategies for the analysis and conservation of artist’s acrylic emulsion paints.
  • Dr Yvonne Gründer, who will join us from the University of Kiel (Germany) on 1 November; Yvonne will be a joint postdoc between the Dryfe and SLMS research groups, working on in situ XAS studies of the nucleation and growth of metal nanoparticles at liquid-liquid interfaces in collaboration with DIAMOND Light Source and Mark Schlossman at the University of Illinois Chicago.
  • Lauren Newton, Michael Foo and Will Johnson, who will work with us in the academic year 2010/11 for their final year MEng research projects.

New research grant: The Designer Nanoparticle

An NSF/EPSRC proposal with Robert Dryfe and Mark Schlossman to study nanoparticle nucleation and growth at liquid-liquid interfaces with synchrotron radiation techniques (XAS and GIXS) has been successful.

Follow this link for more details